
Transfer learning for embedded domains

Matt Beton

Abstract

Transfer learning is a technique that has been applied in many formats to transfer knowledge

between two related, or seemingly unrelated, domains. While transfer learning has shown great

strength in the computer vision, it has been less thoroughly researched in the �eld of time-series

data. In this essay, we propose transfer learning between two embedded tasks; tasks where one

covariate domain is a dimension-wise slice of the other. We �rst train a source model on the

smaller domain, and then use parameter duplication and �netuning to create a target-domain

model with the correct dimension. We supplement the theory with experiments on transferring

single-lead to multi-lead ECG data, both with real and semi-synthetic data.

1 Introduction

Transfer learning has been a hot topic of machine learning research for some years, a technique that
utilises transfer of knowledge between multiple related datasets. We hope to use skills learnt on
source datasets to improve performance on a target dataset. This has parallels in human learning
processes, for example a person that can already play piano may �nd it easier to learn guitar, due
to the overlap of skills transferrable in the domain of playing music. One notable domain where
transfer learning has been applied is to image recognition.

Transfer learning has been less well-explored in alternative domains; in this essay, we talk about
applying transfer learning to timeseries data. Speci�cally, we consider the scenario where the source
and target domain are timeseries with di�erent feature spaces. In chapter 2, we introduce and
formalise the concept of embedded tasks. This is de�ned as a scenario where our source covariate
domain can be seen as a dimension-wise slice of the target domain. We explore using parameter
duplication, �ne-tuning and other architectural changes to solve the problem of embedded transfer
learning, and di�erent modelling decisions we can make based on the task we may be dealing with.

We supplement our theory with experiments in the �eld of ECG classi�cation; taking an ECG
reading and identifying whether the patient has a certain cardiac condition. We will provide some
background on this �eld in chapter 3, and explore experimentally applying embedded tranfer learning
to ECG in chapter 4. We disagree with some of the methodology that has been used in existing
papers on ECG classi�cation, giving justi�cation for why we took the approach we did (and why
we don't use the MIT-BIH dataset) in chapter 5. Finally, in chapter 6, we discuss some further
potential applications of embedded transfer learning.

2 Transfer Learning

2.1 Domains, Tasks, and Manifolds

We begin by de�ning transfer learning between domains. First, we need to de�ne the notion of a
domain and task [1].

All source code for this project can be found at https://github.com/mattyab/ecg_transfer

https://github.com/mattyab/ecg_transfer


De�nition 2.1 (Domain). A domain D = (X , P (X)) is the composition of a feature space X with
a distribution P (X), such that X is a random variable over X . X gives the shape of the feature
set, whilst P (X) de�nes the distribution that samples x ∈ X are drawn from.

De�nition 2.2 (Task). A task T = (Y, f) is the composition of a label space Y and a decision
function f : X → Y, de�ning the true relationship between covariates and labels.

We write the joint distribution of X,Y as P = P (X,Y ). The goal of our model is to get the
best approximation for f , given the dataset of examples {(xi, yi)}i. In some cases (most notably
with some classi�cation models) our model outputs the predicted conditional distributions instead
of point predictions,

f(xj) = {P (y|xj) : y ∈ Y}

2.2 Transfer Learning De�nition

De�nition 2.3 (Transfer learning). Transfer learning uses knowledge learnt from a source domain
and task (DS , TS), to improve performance over a target domain and task (DT , TT ), compared with
if a decision function were learnt solely on the target domain.

Between our two domains, there is assumed to be some shift in distribution (PS ̸= PT ), which
is why we need to `re-learn'; we cannot typically use the source model out-of-the-box on target
data. Scenarios where we do reuse our model without any retraining between DS and DT are called
zero-shot. Domain shift can take multiple forms:

� Covariate Shift is shift in feature (covariate) distribution, PS(X) ̸= PT (X) [2].

� Concept Drift is shift in conditional distribution, PS(Y |X) ̸= PT (Y |X) [3].

� Heterogeneous Transfer allows for di�ering feature spaces, XS ̸= XT .

Despite domain shift between our two domains, by performing transfer learning we hope that
there is information in the source distribution that can be useful in building a model for the target
distribution. This could, in parallel with our possible domain shifts, take the form of a similarity
relationship between PS(X) and PT (X), or between PS(Y |X) and PT (Y |X), that can be exploited
by the use of transfer learning.

Transfer learning can be useful in a variety of settings. It can be bene�cial when we have plentiful
data from our source domain, but lack su�cient data for training a model from scratch on our target
distribution; this is the setting we will explore in this essay. With transfer learning, we are able
to harness the similarities between source and target distribution to build an e�ective model for
our target task without falling victim to over�tting issues due to data unavailability. A common
work�ow for transfer learning is to utilise generalised predictive power of a publicly available model,
bene�cial when we lack the data or compute resources to train a model from scratch. Taking a large
pretrained model, trained on a general dataset such as ImageNet[4], one could �ne-tune it on a set of
images of previously unseen objects. The original model may have never seen a picture of an insect
before, but given �ne-tuning examples of bees and wasps, the network's general image-recognition
ability is able to refocus to the task of discerning bees from wasps.
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2.3 Embedded Transfer Learning

In this section, we de�ne transfer learning in embedded domains, a pair of domains with one contained
in the dimensions of the other.

De�nition 2.4 (Embedded Domains). An embedded domain pair is a pair D = (X , P (X)),D⋆ =
(X ⋆, P ⋆(X⋆)), where elements x⋆ ∈ X ⋆ are given by x⋆ = (x⋆

1, . . . ,x
⋆
k), and crucially each x⋆

j ∈ X .
Each x⋆

j is called a channel, and k is the channel count of the embedding. We say that D is embedded

in D⋆.

The joint distribution P ⋆(X⋆, Y ⋆) can be �attened to a single channel. We write the i'th
coordinate of X⋆ as X⋆

i , and write the joint distribution P ⋆
i = P ⋆

i (X
⋆
i , Y

⋆), referred to as the slice
distribution after Python slice notation.

De�nition 2.5 (Embedded Transfer Learning). Embedded transfer learning is transfer learning
between source-target pairs ((DS , TS), (DT , TT )), where DS is embedded in DT .

To perform transfer learning over an embedded domain pair, we are assuming some relationship
between the source distribution P (X,Y ) and the slice distribution P ⋆

i (X
⋆
i , Y

⋆). So crucially we
not only have a related shape of the feature spaces X ,X ⋆, but also some relevance of the source
distribution P to the marginal slice distribution P ⋆

i .

2.4 Fine-Tuned Models

In this section, we will explore how transfer learning is done in practice. A common transfer learning
setting for deep learning models is parameter �ne-tuning.

We de�ne a model that is completely parameterised by its parameter set {wi}, written as a
decision function f(x;w1, . . . , wi). We have a source-domain dataset DS = {(xi, yi) : xi ∈ XS , yi ∈
YS , i ∈ {1, . . . , n}} of examples drawn from (X,Y ). When training, we aim to minimise an objective
function that incorporates the loss function L(f ;x1, . . . ,xn, y1, . . . , yn), a function that represents
the overall error of the model on labelled source-domain instances. The objective function will
often also include a regularisation term Ω acting on the set of model parameters wi, introduced
to improve model generalisation. Common examples of regularisation term are L1 regularisation∑

i ∥wi∥, and L2 regularisation
∑

i(wi)
2. Our overall objective is to �nd weights that minimise a

linear combination of these terms,

argmin
{wi}

{L(f) + λΩ(f)},

where the regularisation parameter λ is chosen to re�ect how much regularisation we want in
our model. The higher the parameter, the more regularisation we apply, and the more we enforce
the belief that `simpler models are better'. This objective function can be minimised with some
preexisting optimisation algorithm, such as SGD[5] or Adam[6], which are cleanly implemented by
computational graph based machine learning frameworks such as PyTorch [7].

We'll assume from now on that our model f uses a neural network architecture. Denote the
model trained on the source dataset as fS . We want to use the knowledge learned when training fS

to improve accuracy on the target dataset. We achieve this through parameter sharing; reusing the
pre-trained weights for the source model, we can selectively choose layers of our model to freeze or
allow �netuning to the target domain. Note that sometimes we may have a di�erent output shape
between source and target domain (e.g. classi�cation with a di�erent number of categories). The
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solution to this can be to `chop o�' the �nal fully-connected layer, replacing with a layer of the
correct output shape with randomly initialised weights.

When �ne-tuning our model to our target datapoints, we may want to enforce the prior that the
model should stay as close to the original (source-trained) model as possible. One way to achieve
this is through early stopping, halting our training process after a certain number of iterations
without any improvement in our validation set. Another method is to regularise by enforcing a
prior that the learned parameters should be close to the source model fS parameters. Assume our
�nal source model fS has weight set {w̄i} = {w̄i : i ∈ F} ∪ {w̄i : i /∈ F}, where the set F is the
set of parameters that we are �ne-tuning. FC is the set of frozen parameters. We then introduce
a L1 regularisation term for the �ne-tuned parameters, which, in contrast with L2 regularisation,
persuades sparse deviation; few parameters are allowed to deviate from their original value w̄i.

argmin
{wi}

{L(fT ) + λΩ(fT ) + µ
∑
i∈F

∥w̄i − wi∥} (1)

Here, the parameter µ allows us to adjust how much we allow the model fT to deviate from the
source model fS . How much will we enforce what was learnt from our source domain, versus how
much we'll allow for respecialisation.

2.5 Fine-Tuned Embedded Learning

We now demonstrate how we adapt the techniques in the previous section to achieve transfer learning
on a set of embedded tasks, as in de�nition 2.5.

We �rstly train a model fS on our source dataset (DS , TS) with feature space X . Now, noting
that X ⋆ = X ⋆

1 × · · · × X ⋆
k with each X ⋆

i = X , we make k copies of our source model fS , which we
call {f (i)}ki=1. These k copies of fS have the same input shape as is given by X ⋆. We also need
to reshape to get the correct output size via an architecture change. If the �nal layer of fS is a
fully-connected (feedforward) layer with shape (input, output) = (L, c), we chop o� this �nal layer
of each f (i), replacing with a single fully-connected layer of shape (kL, c) to ensemble the outputs
from each constituent network's deep layers. This creates our transfer model fT , as demonstrated
in �gure 1. This new layer can be randomly initialised, or it could be initialised with 1/k of the
weights in the fully-connected layer of fS . In our testing, we use random initialisation, based on
the hypothesis that the �nal deep layer of f (i) outputs the `useful features' learnt from the source
domain, but that we may want our model to use these features in a di�erent way with our larger
domain X ⋆.

If we have the saved weights from our source model fS as w̄j , and each constituent f (i) of our

target model has weights w(i)
j , then our objective becomes,

argmin
{wi

j}
{L(fT ) + λΩ(fT ) + µ

∑
i∈{1,...,k}

j∈F

∥w̄j − w
(i)
j ∥}

Training on this objective function allows us to harness the learned properties from the slice domain
X , and transfer them to the larger encompassing domain X ⋆.

Let's consider what our model distribution looks like immediately after we have done the copying
step (before any �ne-tuning has been made). We use µ to de�ne a probability density; µDi(z|x) is
the density of values z = (z1, . . . , zm) outputted from the penultimate layer of model i given inputs
to the network x = (x1, . . . , xn). We write A = Rm to be the output space of the penultimate layer
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of our source model. If we our working with a classi�cation problem, our source model outputs the
probabilites per class,

fS(X) = {PS(y|X) : y ∈ Y}

We can then write the analogous distribution for the target model, and since the channels do not
mix until the �nal (fully-connected) layer, we can split our conditional distribution P (yi|X⋆) into
each channel's contribution:

fT (X⋆) =
{
P T (y|X⋆) : y ∈ Y

}
=

{∫
(z1,...,zk)∈A×···×A

P T
FC(y|z1, . . . , zk)µD1,...,k

(z1, . . . , zk|X⋆
1 , . . . , X

⋆
k)dz : y ∈ Y

}
(2)

We have separated by output zj of each f (i) using chain rule of probabilities. However our model
architecture has no connections between channels until the FC layer, so each (Zi, Xi) is independent
of each other pair (Zj , Xj); we can split by channel:

=


∫
(z1,...,zk)∈A×···×A

P T
FC(y|z1, . . . , zk)︸ ︷︷ ︸

FC Layer

µD1(z1|X⋆
1 ) . . . µDk

(zk|X⋆
k)︸ ︷︷ ︸

k channels

dz : y ∈ Y

 (3)

This demonstrates how our model uses each channel independently, �nally feeding these individual
`votes' into a fully-connected layer that amalgamates the prediction from each channel.
At the point of copying (before any �ne-tuning occurs), we have each µDi is equal. If we assume
our data is a k-times copy X⋆ = (X⋆

1 , . . . , X
⋆
1 ), then our independence assumption for equation (3)

is no longer true. Going back to equation (2), we �nd:

=

{∫
z1∈A

P T
FC(y|z1, . . . , z1)µD1(z1|X⋆

1 )dz : y ∈ Y
}

(4)

If we use the 1/k weight initialisation for P T
FC described above, then w

(l)
ij = 1

k w̄ij in the �nal layer.
Each channel output is equal, (zl)j = zj . Our fully-connected layer becomes,

k∑
l=1

m∑
j=1

w
(l)
ij (zl)j =

k∑
l=1

m∑
j=1

1

k
w̄ijzj =

m∑
j=1

w̄ijzj

Hence P T
FC(y|z1, . . . , z1) = PS

FC(y|z1) (regardless of activation function used). So (4) becomes,

=

{∫
z1∈A

PS
FC(y|z1)µD1(z1|X⋆

1 )dz : y ∈ Y
}

=
{
PS(y|X⋆

1 ) : y ∈ Y
}

Hence immediately after we copy parameters and under the assumption that our channels are a
k-times copy of X⋆

i , our model f
T acts exactly the same as our source model fS .

2.6 Cross-channel Connections

In our setting above, our only architectural change in the transfer is the �nal (fully-connected) layer.
The separate channels are purely taking a `vote' on their belief based on the information from their
channel data Xi ⊂ X ⋆. But what if there are more complicated interactions between the channels
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Deep Layers

FC Layer

PS(y|X)

Deep Layers
Clone 1

· · ·

· · ·

Deep Layers
Clone k

FC Layer

P T (y|X⋆)

transfer

fS
fT

Figure 1: Transfer from embedded domain to larger domain. Orange represents randomly initialised
parameters, while blue represents copied parameters

than each channel providing a vote in the feedforward layer? Our current setting is just equivalent
to a logistic regression on the outputs of each channel's deep layers. To model for more complicated
interactions, we need to allow interactions between channels earlier in our model.

We take inspiration from adapters described in [8]; we hope to take two intermediate layers of
the deep network l(j) and l(j+1) and allow for cross-channel communication in the stage between
these two layers.

Assume the output of layer l(j) has dimension mj . Then, the total shape of the output at layer
j (across channels) is k × mj We create a new fully-connected layer with dimension kmj × kmj

(square), and use this fully-connected layer immediately after the output of layer l(j). Crucially, we
initialise the weights of this new layer with the identity matrix Ikmj

, so that without any training,
this layer causes no change the the behaviour of the network; see �gure 2 for a depiction of this.

Adding these extra connections is at the expense of increased parameter count of our model,
so higher capacity for over�t. During training, we apply a L1 norm regularisation of this weight
against the identity matrix Ikmj

, where the amount of regularisation applied controls how much we
allow cross-channel connections.

3 ECG Classi�cation

3.1 Background

We will now explore an application of the methods we have described above. The problem of
electrocardiagram classiciation is a natural task to apply machine learning to; a patient is admitted
to hospital, and they get connected to an ECG machine. These ECG machines produce a large
amount of data, which a doctor will then manually interpret to con�rm whether they have a regular
heartbeat, or if they contain any abnormalities that need to be managed. This is the process we
hope to automate; to give guidance to doctors we can increase e�ciency of hospitals and reduce
wait-times.
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· · ·

· · ·

Ch. 1 Ch. k

l(j)

l(j+1)

· · ·

· · ·

Ch. 1 Ch. k

l(j)

l(j+1)

Figure 2: Left: No cross-channel connections between layers j and j+1. Right: Allow cross-channel
connections between layers j and j +1 via inserted layer. Solid red connections are initialised to 1;
dashed connections are initialised to 0, but are allowed to be �netuned away from 0.

One such abnormality is cardiac arrhythmia, a condition that is estimated to a�ict 2 million
people in the UK. Cardiac arrhythmia is characterised by an `irregular' heartbeat. In this work, we
train our models to identify between three categories; normal rhythm, atrial �brillation, and `other'
irregularity. The goal is accurately identifying cardiac conditions to assist doctors, which could help
to speed up diagnosis procedures.

There are two scenarios for ECG identi�cation; a single-dimensional ECG timeseries, obtained
from a single electrode pair on a patient's body, and 12-lead ECG data, the recordings of 12 elec-
trodes across the body recording simultaneously. This leads to two related classi�cation problems;
one with 1-dimensional timeseries, and the related 12-lead problem with 12 stacked ECG traces.

There exist public databases (primarily within PhysioNet[9]) containing labelled ECG traces,
which have been cited by much of the existing work on this �eld. The MIT-BIH Arrhythmia
Database[10] contains 48 half-hour single recordings of 47 di�erent patients, recorded between 1975
and 1979. In 2017, a challenge dataset[11] was created for atrial �brillation classi�cation from
single-lead ECG recordings; this contains 8528 recordings of between 9 and 61 seconds each. In
2020, a 12-lead challenge dataset[12] was created drawing together 5 di�erent data sources. This
dataset has detailed labelling of the cardiac abnormality observed in each instance.

3.2 Prior Work

Deep learning as a method for ECG classi�cation has been explored by multiple sources. Two
recent papers are Deep Bidirectional LSTM for ECG Classi�cation[13], and Automated diagnosis

of arrhythmia using CNN and LSTM techniques[14], which we will build upon in this essay. Both
papers use LSTM cells for classifying a short segment of single-lead ECG readings. I will discuss
the approach they took, as well as some of the shortcomings I believe their methods to have, and
I will discuss in later sections how I approached this di�erently. My source model for single-lead
identi�cation will be based on the architecture detailed in these papers.

Deep Bidirectional LSTM for ECG Classi�cation takes each datapoint to be a single heartbeat,
with one instance in our dataset having length 360, corresponding to a second of recording at 360Hz.
Their architecture �rst uses a discrete wavelet transform[15] to separate the signal into detail bands,
distinct timeseries separated by characteristic frequency. The constituent timeseries are then fed
into two layers of LSTM; they test both unidirectional and bidirectional LSTM layers. They show
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that their model performs better when given the multiple detail bands, compared with using the
raw ECG trace as input.

Automated diagnosis of arrhythmia using CNN and LSTM techniques splits longer ECG record-
ings into 5-second segments. Their architecture uses 3 layers of convolution and max-pooling,
followed by a layer of unidirectional LSTM cells, and three fully-connected feedforward layers.

3.3 Dataset Di�erences

The papers referenced above both use only the MIT-BIH Arrhythmia Databse in their experiments.
The MIT-BIH database contains half-hour-long ECG recordings from 47 distinct patients. These
papers �rst split the 47 recordings into shorter segments (individual heartbeats or 5s intervals).
They then perform their train-test split by random sampling these individual segments. Neither of
the papers make reference to stratifying across patient.

We replicated the models in these papers, using randomised sampling, and were able to reach
a similar accuracy of 90%. However by switching the process to strati�ed sampling by patient,
performance dropped drastically to 60%. Our prior belief was that a person's heartbeat does
not change drastically in distribution across time; but two unique patients, even with the same
diagnosis, will have very varying heartbeats. In section 5, we use KL-Divergence to further support
our claim that one patient's heartbeat is highly self-correlated. As a result, using the MIT-BIH
dataset strati�ed by patient has in e�ect only 47 independent datapoints. Because of this, I made
the choice to use the Challenge 2017 Dataset[11], as this contains 8528 short single-lead recording
that have been recorded from independent patients.

Automated Arrhythmia Classi�cation based on CNN and LSTM [14] does remedy some of the
issues raised regarding dataset, by performing an independent validation stage on the AFDB and
NSRDB datasets. However, I still believe the 2017 Challenge Dataset to be a better �t for my
study, due to the independence of instances within the dataset. During testing, we typically had
much lower accuracies than reported in the papers based on the MIT-BIH Dataset. However, by
considering other studies based on the Challenge 2017 dataset such as Limam et. al.(2017)[16], I
found reported performance in these papers comparable to what my experiments achieved.

4 Transfer Learning ECG Experiments

4.1 Baseline Model

As mentioned in section 3.1, we have two related domains; single-lead feature space X , and 12-
lead space X ⋆. Viewing a single `image' of an ECG trace as one feature, our 12-lead domain X ⋆

is 12-dimensional. This is an example of an embedded domain by de�nition 2.4 with k = 12,
where we hope to exploit a relationship between the single lead joint distribution P (X,Y ) and the
slice distribution P ⋆

i (X
⋆
i , Y ) of the larger domain X ⋆. We will �rst train a baseline model on the

single-lead scenario, and then transfer this to the 12-lead domain.
Our source dataset taken from the PhysioNet 2017 Challenge[11] provides us with 8528 distinct

ECG recordings from di�erent patients, with recording length between 10 and 60 seconds. We hope
to classify these into three categories: normal rhythm (N), atrial �brillation (A), and other rhythm
(O). The distribution of our dataset across these categories is shown in table 1. Since our dataset
is imbalanced across the three categories, we use a weighted crossentropy loss, and F1 score for
measuring prediction accuracy.

ECG recordings in this dataset are sampled at 300Hz. We downsample to 150Hz by using one
pass of the db6 discrete wavelet transform, denoising to remove imperfections created by the ECG
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Type # Recordings Mean Length (s)
N 5154 31.9
A 771 31.6
O 2557 34.1

Type # Recordings Mean Length (s)
N 32813 11.5
A 1106 15.0
O 9182 16.9

Table 1: Left: Distribution of datapoints across categories in challenge (single-lead) 2017 dataset
Right: Distribution of datapoints across categories in challenge 2020 (12-lead) dataset.

recording equipment. During each training epoch, we randomly sample a length-1000 window from
each recording, equivalent to 6.7 seconds of recording. This random subsampling serves as a method
of data augmentation, helping to reduce over�t in a relatively small dataset. It also ensures that all
our datapoints are the same length, allowing for simple batch vectorisation. We also apply z-score
normalisation - ensuring that the ECG signals are normalised to mean 0, standard deviation 1.

The architecture we use is a combination of the architectures seen in the previous work[13][17],
four layers of convolution leading into two layers of bidirectional LSTM. The full layer composition
used can be seen in table 2.

Layer Type Activation Output Shape Kernel Stride # Parameters Dropout

Conv1d ReLU 8× 981 20 1 168 N/A
MaxPool1d None 8× 489 5 2 0 0.1
Conv1d ReLU 16× 478 12 1 1552 N/A
MaxPool1d None 16× 237 5 2 0 0.1
Conv1d ReLU 32× 230 8 1 4128 N/A
MaxPool1d None 32× 113 5 2 0 0.1
Conv1d ReLU 32× 110 4 1 4128 N/A
MaxPool1d None 32× 53 5 2 0 0.1
LSTM (32) Tanh 32× 53 N/A N/A 6272 0.2
LSTM (32) Tanh 32× 53 N/A N/A 6272 0.2
Linear Sigmoid 3 N/A N/A 132 0.0

Table 2: Single Lead Model Architecture

For evaluation, we train our model with 5-fold cross-validation, but when training our baseline
model that we will use in transfer, we train over the entire dataset. After 200 epochs of training,
our model achieves a mean F1 score of 70.9% on the validation set. Observe our train-test plot in
�gure 3. The higher F1 score in the test set is attributed to the dropout we apply on the train set.

4.2 Embedded Transfer

Using our trained `baseline' model for classifying single-lead ECG, we hope that this model has
learnt useful representations of ECGs, knowledge that we can then transfer to the domain of 12-
lead classi�cation. We utilise parameter sharing from the source- to target-domain architecture by
duplicating the baseline model weights 12 times. We then modify the architecture with randomly
initialised weights to combine each constituent model together.

We can also view this as a form of greedy learning, as described in section 8.7.4 of Goodfellow
et. al.[18]. We are picking a sensible initialisation for the 12-lead problem that is our `best guess'
of starting point, given the single-lead data we have available; training each channel independently
�rst, before �netuning on the whole (12-lead) dataset.
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Figure 3: Train-test graph for single-lead (source domain) model

The target dataset we use is the PhysioNet Challenge 2020 [12], which contains approximately
40k 12-lead recordings. This data is highly imbalanced, similar to the Challenge 2017 dataset. Since
we don't need large amounts of data for our transfer stage, we balance our dataset by trimming the
oversized categories. The dataset we create has 1106 datapoints from each of the 3 categories.

Although we do have an abundance of data for the 12-lead problem, we want to test the per-
formance when we have limited data in the target domain. Can embedded transfer learning, with
limited data in the target domain, generalise better than if we were to train a model from scratch
on the target domain? This is to simulate a more complex task where we are able to train a model
on the source domain, but it is infeasible to train a model from scratch in the target domain. This
could be for a variety of reasons; data unavailability, or computational resource constraints. For
example, the setting of image-to-video transfer, as described in section 6 on further work, may be
infeasible to train a model from scratch.

To simulate data scarcity, we use 10-fold cross validation with leave-9-out; we train on 10% of
the data and evaluate on the remaining 90%. We provide two control experiments with randomly
initialised weights using our �rst target-domain architecture (described below in section 4.2.1):

� Training on limited data, in the same way as our transfer training. We only use 10% of the
data to train, and the remaining 90% to test, with cross-validation.

� Training on all the data; regular 10-fold cross-validation, where we train on 9 folds and test
on the remaining one.

These provide lower- and upper-bounds of the performance of our transfer learning model. Our
goal is a transfer learning model that gets as close accuracy to the second control experiment as
possible.

4.2.1 Finetuned Fully-Connected Model

As detailed in section 2.5, we duplicate our baseline model 12 times and replace the 12 (32 × 3)
fully-connected layers with a single (384×3) fully-connected layer, allowing for the separate channels
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to form a `vote' on the classi�cation result. We punish the L1 norm of how much each �netuned
parameter deviates from the baseline model parameter set, as described in equation (1). This is to
enforce the prior belief that the source- and target-domains should be highly related, a method to
reduce over�t to the limited target dataset.

With this setup, we were able to achieve an F1 Score comparable to the control model trained
on a large amount of data. Note in �gure 4 how the �netuned model `snaps' to high accuracy in
just a single epoch.

Figure 4: (left) control model trained on 10% of the data (center) control model trained on 90% of
the data (right) �netuned transfer model trained on 10% of the data. Note that an `epoch' is not
a consistent measure of training iterations, as the training set varies in size between tests.

4.2.2 Cross-Channel Model

Now, we will explore whether there are relationships that exist within the 12-channel models, deeper
than what can be modelled with an indepenedent `voting' model.

Our models will employ cross-channel connections as described in section 2.6. By adding a
stronger regularisation term to the adapters than the rest of the model, we ensure that cross-channel
connections are only formed when necessary.

We then run our experiments with two di�erent models:

� Cross-channel connections allowed between the two layers of LSTM. Final layer still randomly
initialised as above.

� Cross-channel connections allowed between the second and third convolution layers. Final
layers still randomly initialised as above.

We can see in table 3 that our more complex transfer models are not improving from the more
complex interactions allowed; instead, they are over�tting due to overparameterisation.

F1 Score - Train F1 Score - Test
Control, train set 10% 90.4% 70.0%
Control, train set 90% 86.4% 83.6%
Transfer only FC layer (vote model) 90.0% 81.7%
Transfer w/ cross-channel LSTM1->LSTM2 93.3% 79.4%
Transfer w/ cross-channel CNN2->CNN3 89.7% 79.1%

Table 3: F1 score comparing control experiments with �netuned transfer model
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4.3 Semi-synthetic Data

In our above tests with the 12-lead data from the 2020 Challenge dataset, our cross-channel models
did not yield any signi�cant increase in performance versus the basic �netuned model. Are there
any scenarios where these cross-channel connections can improve performance? For this, we will
explore semi-synthetic data using our existing 12-lead dataset.

4.3.1 Perlin Noise

Perlin Noise was initially introduced by Ken Perlin in 1985 [19] as a method for generating
realistic-looking image textures. It has been since become a standard algorithm for generating
`realistic' randomness, with applications such as terrain generation and (pre-GAN) image creation.
We use one-dimensional perlin noise to augment our 12-dimensional datapoints for use in our transfer
model. Perlin noise is the suitable choice for adding randomness to our ECG datapoints, due to it
being smooth and `realistic'. See an example of Perlin noise generation in 1 and 2 dimensions in
�gure 5.

Figure 5: Perlin noise in 1 and 2 dimensions

4.3.2 Linear Dependence Augmentation

We want to augment our 12-lead dataset with a noise component on each channel. Instead of each
channel being independent, we want dependencies between the channels; to synthetically create
this, we will have a constant linear dependence between each channel. We draw a k × m matrix
Mij ; each element drawn independently from U(−a, a) distribution, where a is the scale factor for
how much noise we choose to apply. This matrix is kept constant throughout training. Then, each
time we use a training example, we generate m < k indepenedent 1-dimensional sources of noise
vi, i = 1 . . .m. The noise we add to the ith channel of our 12-lead ECG trace is Mijvj

The goal is that our model will be able to learn the dependencies between the noise in each
channel, and learn to classify the ECG traces correctly regardless of the randomness added from
noise. Observe the results of this test in table 4. Here, we use the `vote model' transfer as our
control test, and have shown that by allowing cross-channel connections performance is improved.
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F1 Score - Train F1 Score - Test
Transfer only FC layer (vote model) 82.4% 71.0%
Transfer w/ cross-channel LSTM1->LSTM2 85.8% 73.7%

Transfer w/ cross-channel CNN2->CNN3 83.6% 71.4%

Table 4: F1 score comparing control experiments with �netuned transfer model

5 Distribution Di�erence via Autoencoders

5.1 Distribution Di�erence - Introduction

In this section, we try to quantify the distribution di�erence across the MIT-BIH dataset [10], to
assess whether small sections of ECG from the same patient can be treated as independent. We
want to compare patients A and B with the same diagnosis with the variation within the half-hour
recording of patient A. Does a person's heartbeat now di�er from what their heartbeat looks like
in 10 minutes? Our claim is that there is much stronger variation between patients than exists
within one patient's half-hour recording. This is heuristically supported by comparing two person's
heartbeats over time visually, as can be seen in �gure 6. If this is the case, it would imply that the
MIT-BIH dataset is not suitable for training a deep learning model, as it has only 47 independent
data sources, leading to our model being heavily overparametrised.

Figure 6: Random sample of 20 heartbeats from two patients with diagnosis `normal'

We will use an information-theoretic approach to measuring the distribution di�erence of two
datasets. The KL divergence of two probability distributions P (x), Q(x) is de�ned by,

D(P ||Q) ≜
∫
x∈X

P (x) log
P (x)

Q(x)
dx (5)

This metric measures similarity between probability distributions, where D(P ||Q) ≥ 0, and
D(P ||Q) = 0 ⇐⇒ P = Q. Noting that D(P ||Q) = −D(Q||P ), we de�ne symmetrised KL
divergence,

KL(P,Q) ≜ D(P ||Q) +D(Q||P )

This is the metric we will use for quantifying how similar/di�erent two datasets are.
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However, since out datapoints are timeseries, we cannot use KL divergence directly. We have
interactions and symmetries in the distribution that won't be accurately captured by information-
theoretic methods. For example, in our ECG data, we have assume some smoothness of the time-
series: if a heartbeat is x = (x1, . . . , xt) ∈ X , then we have strong (auto)correlation between xi and
xi+1. For this reason we have a translational invariance; we want to view a translation up/down
as only a small movement on the data manifold. Another consideration is the invariance in moving
through time: if we have two similar datapoints x(a), x(b), we may have a feature that is charac-
terised by the point x(a)i in one instance, and x

(b)
i+1 in the other instance. We want to recognise these

recordings as `similar', but by viewing each trace as x = (x1, . . . , xt) the KL divergence will not
capture these relationships.

This leads us to the conclusion that we need to apply some transformation to our timeseries; an
encoding that learns useful representations of the features in heartbeats, without a time dimension.
The solution that we adopt is a temporal autoencoder; a model to encode our sequence as a lower-
dimensional object without a time dimension.

5.2 Autoencoders

Theorem 5.1 (Manifold Hypothesis). For most `naturally occuring' high-dimensional datasets, the
set of `likely' elements lies on a lower dimensional manifold [8, 20].

Autoencoders were initially introduced by M. Kramer as an abstraction of principal component
analysis allowing nonlinear interactions[21]. Autoencoders aim to learn a latent representation z ∈ Z
of the lower-dimension manifold M ⊂ X in which the the likely elements sit, where dimZ < dimX .
We achieve this using a model with a bottleneck ; a layer of the network with dimension dimZ <
dimX . We train this model to minimise reconstruction error on instances of x. By minimising the
mean squared error between the original instance x and the reconstructed output x′,

L =
1

n

n∑
i=1

∥xi − x′
i∥2,

We have taught our model to replicate training examples, and in the process we have produced
a lower-dimensional encoding z for our datapoints in X .

In the case where our encoders and decoders are single-layer networks (so each element yi in
our encoding is produced by a linear model), it can be shown that the optimal solution is for the
encoding to choose the m eigenvectors of the covariance matrix with the heighest eigenvalues (the
most variance). This is equivalent to principal component analysis, proven in Baldi et. al.(1989)[22].
This demonstrates how our autoencoder learns the task of pulling out the `most important' factors.
So a multi-layer autoencoder can be seen as a deep learning abstraction of PCA, where the model
allows for a more complex, nonlinear encoding function.

We are dealing with sequential data, so instead of purely feedforward layers, we wish to use a
network with a temporal architecture. The predecessor to the LSTM was the RNN cell; allowing
for passing a `remembered' value along the time dimension. However, the RNN su�ers the issue of
gradient vanishing or explosion after many time steps. The LSTM alleviates the issues of the RNN
this because it allows the �ow of information to be gated ; the information will be only remembered,
forgotten, or released, when it is given a signal to do so.

We took inspiration from the paper on ECG classi�cation by Hou et. al.(2020)[23], which uses
a LSTM autoencoder to encode ECG traces, which is then classi�ed by a SVM.

In our setting, we take each heartbeat to be an individual datapoint, and each segment is the
same length - a second of recording. Our encoder model has two layers of LSTM, with 16 LSTM
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cells per layer. We take the hidden state from our second LSTM layer (with length 32) to be our
encoding, which we hope has `remembered' useful features of the sequence through time. We can
then use this hidden state as the initialisation for the decoder LSTM, and provide the decoder
LSTM cells with all zeros as input.

Since this 32-dimensional encoding is the pure output from the LSTM hidden layers, we might
think there may be some redundancy in these 32 dimensions. To test this, we place a three-layer
feedforward autoencoder inside the LSTM autoencoder; encoding the representation z created by
the autoencoder. This reduces our embedding dimension from 32 to 16. We also speed up our
training process by using greedy learning, de�ned in section section 8.7.4 of Goodfellow et. al.[18].
We �rst train the autoencoder to create 32-dimensional representations f : x(i) 7→ z(i). Then, train
a feedforward autoencoder to encode these representations in 16-dimensions g : z(i) 7→ z̄(i). Finally,
we �netune the combined model g ◦ f : x(i) 7→ z̄(i). We are able to achieve very similar accuracy
with a 16-dimensional encoding as with the original 32 dimensions, showing that the `most likely'
datapoints lie on a manifold with dimension ≤ 16 according to the manifold hypothesis stated above.
See �gure 9 for an example of a heartbeat replicated by our encoding.

x z x′

Figure 7: Fully-connected autoencoder

x

LSTM

LSTM

FC Encoder

FC Decoder

LSTM

LSTM

x′

· · ·

· · ·

· · ·

· · ·

z̄

Figure 8: LSTM Autoencoder Architecture

5.3 Distribution Di�erence

We now have a 16-dimensional encoding for every heartbeat in the MIT-BIH dataset, each heartbeat
labelled by patient and diagnosis. To quantify the distribution di�erence between heartbeats from
the same patient, versus heartbeats from di�erent patients, we take two patients A and B that
both had the majority of their heartbeats classi�ed as 'normal'. We can compare the two patients
heuristically by plotting the distributions of individual variables, as seen in �gure 10, to see that
the distributions are clearly well-de�ned for each patient, but di�er between patient.
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Figure 9: Heartbeat replicated by autoencoder model

Figure 10: Distribution di�erence of encoded beat, between patient 0 and patient 21

To quantify this distribution di�erence, we now return to KL Divergence, as de�ned in equation
(5). We cannot use KL Divergence on our empirical observations; �rst we need an estimate of
the density function. For this, we will use Kernel Density Estimation, a method for producing an
estimate p(x|D) for the probability density given a set of observations D.

De�nition 5.1 (Density Kernel). A Density Kernel is a function K : R → R+ such that,

�

∫
K(x)dx = 1 (probability density)

� K(x) = K(−x)

Two straightforward examples of density kernels are:

� the Gaussian kernel,

K(x) =
1

(2π)
1
2

e−
x2

2

� the boxcar kernel,

K(x) =
1

2
1(|x| ≤ 1)

Lemma 5.2. For K a density kernel, ∫
R
xK(x− xn)dx = xn

De�nition 5.2 (Scaled Density Kernel).

Kh(x) ≜
1

h
K(

x

h
)
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Figure 11: Kernel density estimate �tted to our observations

This allows us to control the scaling of our window, while ensuring that
∫
Kh(x)dx = 1.

Then the Kernel Density Estimator for a dataset D, �rst de�ned by E. Parzen(1962)[24], is
de�ned as,

p(x|D) =
1

n

n∑
i=1

Kh(x− xn)

Observe �gure 11 for how the KDE �ts a distribution function to our dataset.
So, to quantify the distribution di�erence between patient A and patient B, we will take the

symmetrised divergence of the two patients, KL(D(A), D(B)). We need to be able to compare this
with how much a single patient's ECG distribution can vary. For this, we split patient A's dataset
in two. We want to be as generous as possible to our testing; to take the split that will maximise
the distribution di�erence among A. If we split by random sampling, we could almost guarantee
that the two subsets of A's empirical observations are identically distributed. We want to consider
the maximum amount that the distribution of A can vary within the observations we are given.
Hence, we split A in time - taking the �rst half of heartbeats to be our set D(A)

(1) , and the second

half of heartbeats to be D
(A)
(2) , as seen in �gure 12.

5.3.1 The Curse of Dimensionality

A common problem in machine learning is tasks become exceedingly di�cult when the dimension
of data gets high. This problem is due to the number of datapoints in a certain neighborhood as
dimension increases; if dimension increases with the same number of datapoints, we get vanishing
probability of having a datapoint in a certain neighborhood; the datapoints are lost to dimension-

ality. One place this arises is in density estimation; we need a superlinear number of datapoints to
be able to gain an accurate estimate for the probability density.

In 1969, Epanechnikov quanti�ed losses to dimension in density estimation. We de�ne the mean
integrated square error as a metric for quantifying accuracy of our estimated density p(x|D) based
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Figure 12: Comparison of distributions between, and within, patients (A) and (B).

on |D| = n observations.

De�nition 5.3 (Mean Integrated Square Error). Given the true distribution p(x) and our empirical
estimate of distribution p(x|D), we de�ne:

MISE(x) = E
∫

(p(x|D)− p(x))2dx

This is otherwise known as the L2 risk function.

In the case where both our target distribution p(x) and our kernel K(x) are multivariate Gaussian
N(0, Id), Worton [25] showed that MISE(h, n, d) can be calculated explicitly:

M̂ = (4π)
d
2MISE =

1

nhd
− (1 + h2)−

d
2

n
+ 1− 2

(
1 +

h2

2

)− d
2

+
(
1 + h2

)− d
2 . (6)

The patient with the most data has approximately n = 2000 datapoints in d = 16. We seek
the value of our kernel parameter h that gives the best estimate of our distribution, so we use a
numerical optimiser to �nd minh M̂(h, n, d) = 0.8. So, how many datapoints in R1 is this equivalent
to? We can solve equation (6) numerically, �nding the maximum n that could give the same value
for M̂ in d = 1 dimensions;

max{n : min
h

M̂(h, n, 1) = 0.8} = 0.023

This shows out dataset gives equivalent information to n = 0.023 datapoints in R1, completely
insu�cient for providing an accurate estimate of distribution.

When we were training our autoencoder models, we found d = 16 to be the minimum size of
the representation before we start losing replication accuracy in our model. Hence we can view
all 16 dimensions in our encoding as `necessary'. Therefore, we assume that there is some notion
of independence between the variables. So we instead will just try to quantify the distribution
di�erence in each dimension separately; �attening to each dimension in turn and take average over
dimensions.
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5.3.2 Empirical Distribution Di�erence

We are in e�ect testing the hypothesis `does a person's heartbeat shift over time, compared with
another patient's heartbeat'. In each diagnosis category, we tested each patient against themselves,
and every patient against every other patient, averaging over each test. See table 5 for a summary of
the divergence results, showing how the distribution di�erence amongst one patient is considerably
lower than the distribution between independent patients. Hence, we can conclude that the dataset
of all heartbeats labelled by diagnosis has strong correlations between datapoints from the same
patient. We cannot treat this dataset as IID, and since there are only 47 independent subjects, this
dataset is not suitable for training large machine learning models.

N (patients) KL(D(A), D(B)) KL(D
(A)
(1) , D

(A)
(2) )

N 31 1.70 0.14

P 2 0.14 0.033

R 4 1.98 0.20

L 4 0.15 0.24

Table 5: Average divergence between- and within-patient, averaged across diagnosis group. Lower
values imply closer distributions.

6 Further Work

The setting of embedded transfer learning for ECG traces is just one application of this paradigm,
that has been feasible given the resources and time constraints of this project. Here, we will detail
some of the other potential areas that embedded transfer learning could provide an application.

6.1 Speech Enhancement

The problem of speech enhancement relates to taking a recording of speech with imperfections and
recovering high-quality audio. `Imperfections' may refer to; background noise, low quality due to
poor equipment, low quality due to compression, environmental factors such as echoes.

Current literature on speech enhancement uses deep denoising autoencoders to attempt to re-
move these imperfections in audio signals [26]. These models generally rely on domain-speci�c
knowledge; being trained on the speci�c speaker, or speci�c noise type, and some works have at-
tempted to combine domain identi�cation into an ensemble model [27], �rst determining the noise
type, and then selecting the model that was trained accordingly.

The hypothesis of applying embedded transfer learning to this task is that to get studio-quality
audio recording, a single poor-quality audio recording fundamentally doesn't have enough informa-
tion to achieve generalised denoising (and instead must have some awareness of noise type, subject's
voice etc.). With multiple low-quality recordings from di�erent locations in a room, we may have
enough information to denoise speech in a general setting to a higher accuracy than from a single
recording.

When we have multiple simultaneous recordings, we may also introduce geometric information
into the model, encoding where the microphones and the speaker are in relation to each other. This
could provide for better ability to remove echoes from the samples.
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6.2 Embedded Transfer Image Classi�cation

Embedded transfer learning can be applied to image classi�cation in multiple ways; If we have an
image recognition for single-channel (greyscale) images, we could transfer this to the three-channel
scenario, where the extra dimension of colour adds some more information.

We may want to build an image recognition model that can take multiple images of the same
object, and have spatial awareness. For this, we could use embedded transfer learning where the
source domain is a single image classi�er. Similarly to the speech enhancement setting explained
above, we could encode geometric data (about where each image was taken from) as an additional
input, to allow the model to develop an understanding of 3d shape of objects.

We may hope to build a model that takes video data as input, given an image classi�cation
model. For this, we could use embedded transfer learning, appending a recurrent model to the end
of our image model.

7 Conclusion

In this essay, we have introduced and formalised the concept of embedded transfer learning, for
suitably related tasks where one domain is a slice of another.

Our experiments were able to show that when data is scarce, applying embedded transfer learn-
ing to the ECG classi�cation task is able to achieve considerably higher performance than training
a model scratch. However, embedded transfer learning is not as strong as training a model from
scratch on the target domain given an abundance of data. This is in contrast with some cases
of transfer- and meta-learning, where by having previously trained on a related source domain,
transferred models able to achieve higher performance in the target domain. For example in Pro-

gressive Neural Networks [28], the multi-layer architecture used achieves even higher performance
after transfer; it is compiling knowledge from multiple domains to learn to be even stronger. This
leads us to also consider embedded transfer, at least in the ECG setting, as a novel form of weight
initialisation (greedy learning).

While ECG classi�cation is not a problem where it is challenging to train a target-domain model
from scratch, we hope that the concepts in this essay could transfer over to problems where it may
be challenging to build a target-domain model from scratch, such as has been explained in section 6.
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